
International Journal o f  Theoretical Physics, "Col. 27, No. 7, 1988 

High-Frequency Sum Rules for Classical 
One-Component Plasma in a Magnetic Field 

R. O. Genga ~ 

Received September 16, 1987 

A high-frequency sum-rule expansion is derived for all elements of a classical 
plasma dielectric tensor in the presence of an external magnetic field. 124 ~3 is 
found to be the only coefficient of to -4 that has no correlational and finite- 
radiation-temperature contributions. The finite-radiation-temperature effect 
results in an upward renormalization of the frequencies of the modes; it also 
leads to either reduction of the negative correlational effect on the positive 
thermal dispersion or, together with correlation, enhancement of the positive 
thermal dispersion for finite k, depending on the direction of propagation. 
Further, for the extraordinary mode, the finite-radiation-temperature effect 
increases the positive refractive dispersion for finite k. 

1. I N T R O D U C T I O N  

The high-f requency sum rule provide the coefficient o f  the inverse 
powers  o f  to in the h igh-f requency asymptot ic  expansions o f  ~t(k). Sum 
rules fol low from the equat ions  o f  mot ion  (i.e., conservat ion laws) via the 
f luctuation-dissipation theorems (FDT)  and the Kramer s -Kron ig  (KK)  
relations for  the response funct ions (Kalman,  1978). 

In  this work we consider  an anisotropic  system in the presence o f  an 
external magnet ic  field, since the result for  an isotropic system is a lready 
known  (Kalman  and Genga ,  1986). In  this system the dielectric tensor  has 
six independent  elements. Also, the relat ionship between the elements o f  
the external and current -cur rent  response funct ion and the elements o f  the 
dielectric tensor  become quite involved. 

The high-f requency expansion is carried out  to order  to -5. The method  
o f  derivat ion is similar to the s tandard  approach  (de Gennes ,  1959) and 
relies heavily on the Hami l ton ian  formalism. It is known (Kalman  and 
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Genga, 1986) that in order to describe the transverse interaction, the particle 
Hamiltonian has to be enlarged to include the photon degrees of freedom. 
In so doing we encounter, in addition to the particle contribution to the 
sum-rule coefficients, the photon gas coexistent with the high-temperature 
plasma, which generates its own contribution. As in the magnetic field-free 
case (Kalman and Genga, 1986), the evaluation of the contribution is 
hampered by two circumstances; the first is the well-known classical ultravio- 
let divergence, which requires that even within the framework of a classical 
theory one describe the photons via the quantum Bose-Einstein distribution, 
while the second difficulty arises from the fact that the equilibrium descrip- 
tion implies the existence of one single temperature for the combined 
particle-photon system. Such an equilibrium, however, seldom prevails in 
any but astrophysical situations. Thus, a reasonable ad hoc approximation, 
described in Section 2, is used to decouple the photons from the particle 
system. 

In Section 2 we derive the general relationships between the current- 
current response function sum-rule coefficients and those of the dielectric 
tensor. Then we calculate the e x a c t  0) - 2  , 0 ) -3 ,  0 ) -4 ,  and 0)-5 sum-rule 
coefficients for all elements of the dielectric tensor, respectively. In Section 
3 we calculate the long-wavelength limit of the results. We use the same 
procedure as that given in the Appendix of Kalman and Genga (1986) for 
the magnetic field-free ease in solving the lengthy algebra leading to the 
results of Section 2. In Section 4 we determine strong coupling and finite- 
radiation-temperature effects on the high-frequency modes, i.e., the plasma 
mode and the high-frequency extraordinary mode for propagation parallel 
and perpendicular to the magnetic field, respectively. 

2. SUM RULES FOR FULL DIELECTRIC TENSOR 

In this case a quantity of central importance is Q~~ the Fourier 
transform of the two-point current density correlation function defined by 

Q~'~ dTe"~ (1) 

where 

e 2 

Q~V(k~-) = - -  (j~(r (2) 
v 

When we apply the linear fluctuation-dissipation theorem to the current 
density Jk, we find that 

~A 47re2 
cr~,,(k0)) = flpQ'~"(k0)) (3) 

tO 
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where the superscript A stands for "anti-Hermitian part of." The frequency 
A H  ~ .v  moments of ~ ( k c o ) ,  f~§ are then given by 

^ 4 ~ e  d 
= i "~ "~ (4) ~ , (  k ) ---~-  flp (J(k)(r)j_k(0))[,= o 

where 

j~ = ~  V~ e x p ( - i k ,  xi) (5) 
i 

with V~ the velocity of the ith particle. Both odd and even moments exist 
A H  in equation (4). Odd moments originate from the imaginary part of ag~(kaJ); 

A H  the even ones originate from the real part of a ~ ;  ~H and ~ are interrelated, 
i.e., 

A" (6) 
~.=1 

t. o d d  

^ 
~ v  ~+~(k) 

*H (7) 
,~=2 
e v e n  

where the superscript H stands for "Hermitian part of"  and prime and 
double prime denote "real part of"  and "imaginary part of," respectively. 
As a result of equations (5) and (6), the complete high-frequency expansion 
of the dielectric tensor e~(kto) and the complete high-frequency expansion 
of the polarization tensor oq,~(kto) are expressed in a way similar to that 
of the corresponding "external" k~(kto) ,  since it is known (Kalman, 1978; 
Kalman and Genga, 1986) that 

a = &(A - &)-1A, A = 11 - n2T 
(8) 

n = kc /w,  T = k .  k~ k: 
^ 

l a y  I x v  with 12,+1(k) replacing l'l~+~(k)-s. The relationships between the two sets 
of coefficients up to ~ = 4 are (Kalman and Genga, 1986) 

f ~ ( k )  = f~F(k) 
^ 

f l ~ ( k )  = l ~ ( k )  

I I ~ ( k )  = l ~ ( k  ) _ l ~ . ( k ) i ~ ( k )  (9) 

f ~ ( k )  = l ~ ( k )  - l~l ~" (k)l~ ~ (k )  - l~l~"(k)l~l ~(k)  

As discussed in the introduction, the Hamiltonian appropriate for the 
description of the interaction of the plasma with the transverse electromag- 
netic field must include the photon degrees of freedom (Kalman and Genga, 
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1986). Thus, we have 

H --m E 2 i V~+�89 • V ( x i - x f l + � 8 9  (10) 
~j q 

i # j  

with 

1 e [4q'r\ 1/2 
V, = - - P , - m  ~-~- ) Y. a q e x p ( i q . x , ) - e - - ~ - A O ( x , )  

m q m c  
(11) 

e 2 
= i ' - ~ -  flp[(Jk (r)jk(O)) -- (./k(O)Jk('r))]~-=o 

47re 2 
="  " zk Vi Vi Vj 

2C" -- - -  /3 

�9 p tt 
- U V, - ik'~V~ V~V?) e x p [ - i k  �9 (x~-xfl])  

4~re 3 N 
= i mZc V e~PB~ 

2 
= i tope e~,,pBOp 

m r  
(15) 

where A~ is the vector potential of the ith particle. 
We now turn to the calculation of the frequency moments up to t = 4. 

In the presence of an external magnetic field, the system is anisotropic and 
& is nondiagonal. The real diagonal and off-diagonal elements satisfy 
symmetric condition 

/x v vbt 
~'~ ~+1 ( k ) =  a ~ + l ( k  ) ( 1 2 )  

whereas the imaginary off-diagonal elements satisfy the antisymmetric 
condition 

/.tu 
~~+l(k) = -~Qr+~l(k) (13) 

The first moment is trivial, 

~2 (k) = ~ [3p(jk (0)jk(0)) 

4r 2 rn 
- 

= w28 ~" (14) 

The second moment yields 

l ~ ( k )  = i 4r d 
v /3p ~--~ (j~'(~-)j ~,(0))l~= o 
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The second step in equation (15) is true because of the time translation 
invariance of  

. p .  ~ v Ok (~)]d0)) 
l?f' is the acceleration of  the ith particle in the ~ direction, given by 

1;'~ 10dP+e 2 eq = - - - -  " exp(iq �9 xi) 
m x ?  m \ V /  q 

+-- ~ [ ~ x ( q x a ) ] "  exp( iq .x~)+-- (VixB~ '~ 
m q m e  

where 

O~ OH OR 
ox," ox? axe" 

v(x  x.) R 2 ,,,,, 
m ~ n  

(16a) 

(16b) 

H is the total Hamiltonian defined by equation (10)o The third moment 
leads to 

,~, - 4" r re  2 [ d \  2 

m 

e 2 
= ~ ~(j~(o)j[(o)) 

41re: 
V f lp~( (V iV~+k  k V, V j V , - i k " V i V j  

~j 

+ ik~V~Vfr e x p [ - i k  �9 ( x , - x j ) ] )  (17) 

The four terms in equation (17) can be evaluated by a series of  operations 
based on the canonical equations. Details of the calculation are similar to 
the one given in Kalman and Genga (1986). As already known (Kalman 

u and and Genga, 1986), the presence of the photon degrees of  freedom aq 
/ x  / x  ~' lead to the presence of  averages of field coordinates of the type (aq aq) e q  

and (eq eq), which are expressible in terms of  the inverse temperature/3 in 
strict thermal equilibrium. In such a situation we have two distinct, particle 
and radiation, temperatures, represented by/3p a n d / 3 ,  respectively, for the 
system. Further, the evaluation of field coordinate averages quote above 
classically leads to divergent integrals when summation is over the possible 
q modes of  the electromagnetic field, which is also in agreement with the 
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classical ultraviolet divergence of the electromagnetic field energy. There- 
fore, such averages must be evaluated quantum mechanically even in the 
framework of a classical theory such as the one we are considering. As in 
the magnetic field-free case (Kalman and Genga, 1986), if we introduce 

Ciq = - 1 / 2  . 1 / 2 _ #  �9 1 / 2  p. ,u,i 2 [COq Uq+(l/tOq )eq]e (18) 

tOq = qc 

as a new set of coordinates with the polarization vectors e" ,  and identifying 

i = ci*(?i  (19) n q  ~q ~q 

as the equivalent of the photon number operator, we obtain averages by 
setting 

Then equation (16) reduces to 

exp(/3htoq) - 1 
(20) 

2 2  { ^ _ tope 4 1 q~'q~ k~'k ~ 
l )~ ( k )  - m2c2 e~ae  ~"~B~ ~ + tOp ~ ~ ~ (Sk-q-- Sq) -[- k 2  

- ---~-- + k 2 ] J  

/3~mC2q q2 e e nttoq)ntOqp r (21) 

It is known that in the k-> 0 limit no difference should exist between the 
longitudinal and transverse elements of l ~  ~. The offending term violating 
this requirement is 

] 
tOol k2 -r/3~ k 2 ]3  

We argue that in this limit the distinction between particle (longitudinal) 
and radiation (transverse) temperatures is meaningless: thus, we treat/3, as 
a k-dependent quantity, such that /3,(k~O)=/3p, while /3r(k~O) is not 
affected by this condition. Since we also consider a nonrelativistic approach 
in this derivation, the last term is dropped, since it is of the same order as 
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the relativistic corrections. Then equation (21) becomes 

2 e~'~Pe"~';'fl~ ~ 4{ =m.c~'~w.z; +to 6~"+ ~p T ~ " [ f ( x l , ) -  1] l ~ ( k )  
f~r 

k" 1 
+ ~  (3LU + Tt ~) + ~ Y LU(&_ ~- SO 

_-Nq 

~ "N ~ T ~ S k - " f ( x ~ )  

where 

L~" = k~'k"/ k 2, 

Xk = htokflr, 

The fourth moment yields 

T~" = 3~" - k ~ k " / k  ~ 

f ( x )  = x / ( e  ~ - 1) 

47re 2 
f ~ ( k )  = - i  

V 

4~re 2 
= i  

V 

4ere 2 
= i  

V 

d 3 
/~ ~-~-/~ (j~(r)j~(O))l~-=o 

t~d(j'~ (o)j ;(o)) - ( j r  (o)j';(o))] 

f ~ , Z ( [ i ) r v ; + .  ~ ~ ...,~ ,k Vj V; V, - ik ~' V~ Vy V~ 
~j 

(22) 

(23) 

+ k ~ k ~  Vf V~ VT- ~2k~V7 ~'~ ~'; 

+ 2k~ ~ V~ V~ V7 V~- k~k~V~ V? Vf V~ 

- ik"k ~' V7 V7 V~ V~ V f  - f/~ V ;  + ik ~ V~ V~ V ;  - ik '~ (/7 (/~ V) ~ 

- k~k ~ (/~ V ;  V~ V~ - i2U" V~ V f  (Z~ - 2 k " k  SV~ (,'f V~ V~ 

+k~,k~,V~V?V;( /~  . ,~ ~, ,~ ~, ,, ~ 8 tk k V) Vj V; V; Vl] e x p [ - z k .  (x , -x j ) ] )  
(24) 

The 16 terms in equation (24) can be evaluated in the same way as those 
of  equation (17). Using the same arguments as those used in solving equation 
(17), we find that equation (24) becomes 

f l ~ ( k ) -  ito2 e3 r2e~V~B~ ~ - ~ L - e~PB~176176 - e~"~'B~176176 

�9 topea ~ [ 
+ z ~  ( e ~ " k  " + e""Pk~)k " +2e~"Pk'~k ~' + (e~'Pk " 

2m cflp 

2 / k~,k ~, k~,k ,, _~,,'p k,,k~,~ ] 

3mcaflp k2 e k2 ] 3 
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q~q~" tto,eB 1 ~. # ~ k  ~ 
4 2mc -N q EF'3P q + E S v p -  "q- EI~SP "* q2 (Sk-q-Sq)  k2 

+ e k 2 fl~ k 2 I 

+ e 8~'0 t~. 's ~ n(t~ gmc2~r 

XY. 2e a~~ -ea~" q2-e'~Pq'~ 
q q J J 

§ ~ 2e ~p BOO 02 

.......... ~176  q~ oo] + 2e"~~ q2 q2 q2 B g~,_qn(t%)ht%fl~ 

+ 2 m N c ~ , ~ L  - k 2 ] k 2 } J  

x B~ (25) 

Since we consider a nonrelativistic approach,  the relativistic correction 
terms in equation (25) are negligible compared  to unity. Therefore, when 
terms of the order c -2 or higher are dropped in equation (24), we obtain 

�9 2 

l~ ~ (k) = zto p_____ee (2e ~"pB~ ~ - e ~8~176176 ~ - e ~~176176176 ~ ) 
2m2c 

4 i3t~176176 
m2 C[3p ( e'~~ L'k ~ § e '~.O L ~  + e'~O L~. ) k 2 

i~176176176 ~p~'~p'r'~- o -k  
4 2mc 

+ ~-eP (2e~O + e~. 'T '~  + e rk  )Sk_qf(Xq)] (26) 
ottJp ot~ 

13r .1 



C l a s s i c a l  O n e - C o m p o n e n t  P l a s m a  in M a g n e t i c  Fie ld  827 

M-v To obtain an explicit expression for ~,§ we choose the k-system so 
that we have 

BOx = B ~ = B sin 0 

By ~ = B ~ = 0 (27) 

B ~ = B 3 = B COS 0 

and 

q~ = q l  = q sin 0 cos qb 

qy = q 2  = q sin 0 cos 

qz = q 3  --_ q cos 0 

(28) 

3. L O N G - W A V E L E N G T H  L I M I T  

In the long-wavelength (k--> 0) limit we find that the elements of  the 
f requency moments  are given by 

~ l ( k ) = ~ 2 ( k  ) ~33(k ) _  2 (29a) : - -O . )p  

(~3~e(k) = - ~ ' ( k )  = itop~a cos 0 (29b) 

1~423(k) = _c~32_~3 - itO~p~ sin 0 (29c) 

"~ 4 - -  (1 - 2 f l p E  . . . .  ) ~"-~,~l(k) = ogp 

oo+  t (29d) 
prnn c L '~  ~Tr 307r 

l~4~3(k) = l't34~(k) = 0 (29e) 

- 4{ k ~ 
a~2(k)=~o I+K- 5 ( 1 - ~ , S p E  .... ) 

tip p~r2 l Go+~l-~(SG,+2G2)k2]} (29f) 
't n4,,h~,:~ L77- + 7--~-~ ..,..,. 

" ( k2 
a 3 3 ( k ) =  o) 4 I+K2- - (3+~f l ,E  . . . .  ) 

~p FTr 2 1 Go+ l__~(5G,+G2)kZ]l (29g) 
. 1 3  

A ^ 1 2 

{2 1 }} /3p ~" 5 
2~,n~3e3 T+~--~ C o + 3 - ~  (25~,+9~2)k 2 cos 0 

(29h) 



828 Genga 

^ 2 I k2 ~523(k) = _~-~3 = i2w4p12~ 1 -F�89 .... ) r--5 

-~2~4~nn~3c3192~-35-~Go~-30qT-~(25Gldl-8G2)k2]}sin O 
(29i) 

where 

n y. 47re 2 

G~ f dxxZf(x)ngq 

Gl= f dxx2f(x) l ~qnqq (30) 

f 02 
G2 = J dx x2f(x) ~ ngq 

K 2 = 47re2flpn 
and f~ = e~/rnc, the electron cyclotron frequency. 

We see that all coefficients of w -2 and w -3 are independent of  both 
correlational and radiation terms, l ~  3 can also be noted as the only 
coefficient of w-4 that has no correlational and radiation contribution. The 
correlational terms of  l~] ~ and i~22 --4 are independent of magnetic field and 
are the same as in the nonmagnetized case (Kalman and Genga, 1986), i.e., 

k 2 
--2094p~p E . . . .  K 2 ( 3 1 )  

The correlational term of  ~-4~33 is also independent of magnetic field and is 
equal to 

k 2 
4 4 T3C"Opflp E . . . .  K 2 (32) 

which is the same result obtained in the magnetic field-free case (Kalman 
and Genga, 1986). The correlational terms of  ~ 2  and ~ 3  are imaginary 
and magnetic field-dependent; they are of the form 

k 2 
-i2to4Oflp E . . . .  ~ (33) 

and 

k 2 
�9 3 4 ~3w pl~ flpE .... --5 (34) 

K 
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respectively, where E . . . .  is the (negative) correlation energy per particle. It 
can also be noted that the correlational terms of  124 ~1, 1222, and 12~2 have 
opposite signs to those of  1233 and f~3. The effect of finite radiation tem- 
perature is manifested through Go, G1, and (32 and is very small under 
normal conditions, i.e., in laboratory plasmas, but cannot be ignored in 
situations where the radiation temperature is very high; for instance, in 
stellar interiors. We also find that radiation contributions are of  the order 
T~ and not T 8, which would be the expectation on the basis of  the naive 
radiation drag model (Landau and Lifshitz, 1960). 

4. STRONG COUPLING A N D  FINITE-RADIATION- 
TEMPERATURE EFFECTS ON PLASMA D I S P E R S I O N  

Although the high-frequency sum rule is exact, it requires that 12o~-1 << 1, 
Wpw-l<< 1; thus, it is not very reliable for the calculation of  the dispersion 
relations. Under normal conditions the effects of  finite radiation temperature 
are very small and can be ignored. However, in situations where the finite 
radiation temperature is very high, as in the case of  stellar interiors, its 
contribution must be taken into account. The high-frequency modes of 
interest are the ordinary and the extraordinary modes. The extraordinary 
mode of interest is the one with cutoff frequency 

o92 = 112[ 1 + (1 + 4to p2/I'~2)1/2] 

We consider all the modes for propagation parallel and perpendicular to 
the magnetic field. We use a coordinate system where k = (0, 0, k) and B ~ 
is the x - z  plane, i.e., the k-system. 

We determine the properties of the high-frequency waves by applying 
a small perturbation on the dispersion; the shift of  frequency due to 
correlational and finite-radiation-temperature effects occurs as a result of  
this. The correlation is very weak for weakly coupled plasmas, but can be 
strong for strongly coupled plasmas. The frequency shift due to correlation 
is of  order k 2, and thus is small as k-~ 0, which is equal to the order of  the 
frequency shifts caused by refractive, thermal, and quantum effects, respec- 
tively, even for 3' >> 1. That is, after perturbation we find that 

~o = w~ 6oJ; 8w<< w ~ (35) 

where 

o ~top: ordinary mode 
w = (36) 

oJz : high-frequency extraordinary mode 

a1(3',/3r; k, ,o) 
6o) = (37) 



830 

w i t h  

Genga 

A~(to) = 0Ao(tO__.....~) iI (38) 
O~ I w=~o ~ 

The frequency shift 6to is due to refractive, thermal, correlational, and 
finite-radiation-temperature effects; equation (35) is obtained by applying 
a Taylor expansion to the dispersion relation h = 0 about to ~ where A is a 
function of the components of the dielectric tensor. 

4.1.  P r o p a g a t i o n  P a r a l l e l  to M a g n e t i c  Fie ld  

In this case the dispersion relation is given by 

[ ( e l  I -- / , /2)2 --  e 122]e:33 ----- 0 (39) 

which leads to 

~33 = 0 (40) 

for the longitudinal mode and 

(~,, _/ , /~ )~_  2 e12=0 (41) 

for the extraordinary mode. We find that in this situation the ordinary mode 
does not exist; instead, we have the longitudinal mode. 

4.1.1. Longitudinal Mode 

Since the longitudinal mode oscillates at the plasma frequency, after 
applying a small perturbation to the dispersion relation, we find that 

~w = w--e2 CL(% flr)+ At.(y, [~r)-'~ (42) 

where 

AL(Y, f l r )=3+~r E . . . .  --]- 1 /3PK2 (5G,+Ge) (43) 
30~ 2 [34nh3c 3 

/3p [ 2 1 ) 
CL(T, fir) = "fl4nh3c3 ~-~+~--~ Go, (44) 

For f l T ~ 0 ,  At is known (Kalman and Golden, 1979) to change from 
positive to negative values for 3,> Ycrit. From both molecular dynamics 
computer results (Hansen et aL, 1974, 1975; Baus and Hansen, 1980) and 
recent, more sophisticated theoretical results (Golden and De-Xin Lu, 1985) 
indicate an actual value of 3'crit ~ 45, but according to equation (43), Y~,it > ~. 
The effect of finite radiation temperature is manifested through Go, g~, and 
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G2 ; for all situations but the combined occurrence of strong enough coupling 
to induce oscillations in gq and extremely high radiation temperature causing 
the photon thermal wavelength to become shorter than the interparticle 
spacing, it is expected that Go > 0, while G1 > 0, g2 > 0; however, even for 
Go< 0, the 7r2/45 term is expected to dominate. Thus, a finite radiation 
temperature results in (1) an upward renormalization of the plasma 
frequency from 

wp to o9p(l+CL/2) (45) 

and (2) a reduction of the negative correlational effect on plasmon dispersion 
for finite k. 

4.1.2. Extraordinary Mode 

In this case we find that 

3 w -  o9___2_p G ( y , / 3 r ) +  l + - ~ - G ( y , / 3 r )  c 2 
- 2o)2 

0)4 ~r)] k2 } (46) 
+ o'22 AT(% 

where 

AT(y, ~r) = 1 - 2 ~ e E  . . . .  + flpK2h-3 
30,rr2fl4rn (5G1 + 2G2) (47) 

If CL is very large, then a finite radiation temperature results in the upward 
renormalization of the extraordinary frequency from ( 2 )  

o92 to o92 1 +~-~P2 CL (48) 
2o92 

Further, it can be seen that finite-radiation-temperature and correlational 
effects enhance the dispersion for finite k. 

4.2. Propagation Perpendicular to Magnetic Field 

The dispersion relation is given by 

(e,1 - n2)[(e22- n2)e33 -- e23] = 0 (49) 

from which we have 

ell _ 1,12 = 0 (50) 

for the pure transverse mode, which is called the "ordinary mode" because 
the propagation is not affected by the external magnetic field, and 

(e22- n2)e33 - e23 = 0 (51) 
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for the coupled transverse-longitudinal mode, which is called the "extraor- 
dinary mode"  since the propagation is affected by the external magnetic field. 

4.2.1. Ordinary Mode 

The frequency shift is given by 

This shows that a finite radiation temperature results in the upward renor- 
malization of  the ordinary mode from wp to wp(1 +�89 as is the case of 
the longitudinal mode above. The correlations are seen to increase, rather 
than decrease, the positive thermal effect, in contrast to the effect of correla- 
tions on longitudinal plasmon dispersion for finite k. If  one argues that the 
effects on dispersion can be seen in the system for strong coupling in an 
attempt to emulate the mode structure of  a Wigner lattice, this result is not 
surprising, since the high-frequency transverse phonons, in contrast to the 
longitudunal ones, do exhibit a positive dispersion (Kalman, 1978). 

4.2.2. Extraordinary Mode 

In this case we have 

&o-2w---~2 CL(T, fl~)+ 1 w2 - ~ ( y , ~ )  k 2 

where 

Ax(y, flrr)=2+~flpE . . . .  "[ [~PK2 ( 1 0 G , + 3 G 2 )  
607r2 f14 nh 3 c3 

(53) 

(54) 

It can be seen that the finite-radiation-temperature effect results in an upward 
renormalization of the extraordinary frequency from to2 to to2[l+ 
1 2 2 ~(top/to2)CL] for large CL; it also reduces the negative correlational effect 
on thermal dispersion for finite k. 
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